skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Feng, Zhixuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Arctic Ocean has experienced significant sea ice loss over recent decades, shifting towards a thinner and more mobile seasonal ice regime. However, the impacts of these transformations on the upper ocean dynamics of the biologically productive Pacific Arctic continental shelves remain underexplored. Here, we quantified the summer upper mixed layer depth and analyzed its interannual to decadal evolution with sea ice and atmospheric forcing, using hydrographic observations and model reanalysis from 1996 to 2021. Before 2006, a shoaling summer mixed layer was associated with sea ice loss and surface warming. After 2007, however, the upper mixed layer reversed to a generally deepening trend due to markedly lengthened open water duration, enhanced wind-induced mixing, and reduced ice meltwater input. Our findings reveal a shift in the primary drivers of upper ocean dynamics, with surface buoyancy flux dominant initially, followed by a shift to wind forcing despite continued sea ice decline. These changes in upper ocean structure and forcing mechanisms may have substantial implications for the marine ecosystem, potentially contributing to unusual fall phytoplankton blooms and intensified ocean acidification observed in the past decade 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. This dataset includes hatch and larval period for sand lance collected in 2019 and results from particle tracking runs of simulated sand lance larvae throughout the Northeast U.S. Shelf as part of Long-Term Ecological Research (NES-LTER). Release dates vary by region, corresponding to hatch and settlement dates of settling sand lance collected in 2019. Particles were depth-keeping throughout the upper 40 m to best replicate our understanding of the vertical distribution of sand lance larvae. Data were used to determine the average particle transport pathways from these sand lance habitats, including connectivity among the three hotspots, and spatial variability of connectivity within each hotspot. Further information can be found within the manuscript: Suca, J. J., Ji, R., Baumann, H., Pham, K., Silva, T. L., Wiley, D. N., Feng, Z., & Llopiz, J. K. (2022). Larval transport pathways from three prominent sand lance habitats in the Gulf of Maine. Fisheries Oceanography, 31( 3), 333-352. https://doi.org/10.1111/fog.12580 
    more » « less
  3. Oliver, Matt (Ed.)
    Abstract The signal of phytoplankton responses to climate-related forcing can be obscured by the heterogeneity of shelf seascapes, making them difficult to detect from fragmented observations. In this study, a physical–biological model was applied to the Northwest Atlantic Shelf to capture the seasonality of phytoplankton. The difference in phytoplankton seasonality between the Mid-Atlantic Bight (MAB) and the Gulf of Maine (GoM) is a result of the interplay between nutrients and temperature: In the MAB, relatively high temperature in the cold season and longer oligotrophic environment in the warm season contribute to an earlier winter bloom and a later fall bloom; in the GoM, low temperature and strong mixing limit phytoplankton growth from late fall to early spring, resulting in a later spring bloom and an earlier fall bloom. Although the temperature difference between the GoM and the MAB might decrease in the future, stratification and surface nutrient regimes in these two regions will remain different owing to distinct thermohaline structures and deep-water intrusion. The spatial heterogeneity of phytoplankton dynamics affects pelagic and benthic production through connections with zooplankton and benthic–pelagic coupling. 
    more » « less
  4. null (Ed.)
  5. Abstract Northern sand lance (Ammodytes dubius) are among the most critically important forage fish throughout the Northeast US shelf. Despite their ecological importance, little is known about the larval transport of this species. Here, we use otolith microstructure analysis to estimate hatch and settlement dates of sand lance and then use these measurements to parametrize particle tracking experiments to assess the source–sink dynamics of three prominent sand lance habitats in the Gulf of Maine: Stellwagen Bank, the Great South Channel, and Georges Bank. Our results indicate the pelagic larval duration of northern sand lance lasts about 2 months (range: 50–84 days) and exhibit a broad range of hatch and settlement dates. Forward and backward particle tracking experiments show substantial interannual variability, yet suggest transport generally follows the north to south circulation in the Gulf of Maine region. We find that Stellwagen Bank is a major source of larvae for the Great South Channel, while the Great South Channel primarily serves as a sink for larvae from Stellwagen Bank and Georges Bank. Retention is likely the primary source of larvae on Georges Bank. Retention within both Georges Bank and Stellwagen Bank varies interannually in response to changes in local wind events, while the Great South Channel only exhibited notable retention in a single year. Collectively, these results provide a framework to assess population connectivity among these sand lance habitats, which informs the species' recruitment dynamics and impacts its vulnerability to exploitation. 
    more » « less